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Abstract: Stochastic Differential Equation (SDE) models are used to describe 
the dynamics of complex systems with inherent randomness. The primary 
purpose of these models is to study rare but interesting or important 
behaviours, such as the formation of a tumour. Stochastic simulations are the 
most common means for estimating (or bounding) the probability of rare 
behaviours, but the cost of simulations increases with the rarity of events. To 
address this problem, we introduce a new algorithm specifically designed to 
quantify the likelihood of rare behaviours in SDE models. Our approach relies 
on temporal logics for specifying rare behaviours of interest, and on the ability 
of bit-vector decision procedures to reason exhaustively about fixed-precision 
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arithmetic. We apply our algorithm to a minimal parameterised model of the 
cell cycle, and take Brownian noise into account while investigating the 
likelihood of irregularities in cell size and time between cell divisions. 

Keywords: bioinformatics; computational systems biology; rare behaviours; 
SDE; stochastic differential equation; decision procedures; cell cycle model; 
bit-vector; SMT solver; satisfiability modulo theories; stochastic model; 
Brownian noise; temporal logic. 
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1 Introduction 

Complex biological systems whose behaviour depends on one or more sources of 
randomness are often described using Stochastic Differential Equation (SDE) models 
(Arato, 2003; Pfeuty and Kaneko, 2007; Ghosh et al., 2012; Jha and Langmead, 2011a; 
Lefever and Garay, 1978). SDEs are well suited to the investigation of biological 
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phenomena (e.g. bi-stability in genetic circuits; de Jong, 2002) and cyber-physical 
systems that are sensitive to stochastic effects (Marwedel, 2008). Unfortunately, many 
SDE models can be difficult to analyse algorithmically due to their stochastic nature. In  
particular, SDE models generally do not admit analytic solutions (except for very  
restricted forms). For this reason, stochastic simulations are generally used to understand 
the behaviour of such models. To perform such simulations, independent and identically 
distributed (iid) simulation trajectories are sampled from the model. Each sample can 
then be evaluated with respect to some user-specified behaviour (e.g. whether a tumour 
forms or a biological cyber-physical system crashes). The statistics of the resulting 
Bernoulli observations can then be used to estimate the probability with which the 
behaviour holds under the model and to estimate conditional probabilities (e.g. the 
probability that the tumour is caused by mutations to a particular cell type). 

Independent and identically distributed-sampling is efficient if the behaviour under 
consideration is common, but many important behaviours are rare (Juneja and 
Shahabuddin, 2006). Sampling is an inefficient means for studying rare behaviours 
because the vast majority of the sampled trajectories will not exhibit the desired 
behaviour. For example, consider an SDE model of a population of cells. If the model is 
realistic, then phenomena such as tumour formation will be rare, as they are in nature. 
Consequently, the cost of generating multiple tumour-forming trajectories for subsequent 
analysis using iid sampling will become prohibitive. One natural approach for dealing 
with the cost of studying rare behaviours is to employ biased (i.e. non-iid) sampling 
procedures (e.g. Jha and Langmead, 2011a). In this approach, the underlying probability 
distribution over trajectories is manipulated in some fashion to expose rare behaviours. 
We note, however, that biased sampling schemes are usually insensitive to the details of 
the particular behaviour under consideration and may not achieve the desired goal of 
studying rare behaviours. Indeed, a poorly designed biased sampling scheme can actually 
increase the costs of studying rare behaviours. 

A related challenge associated with SDEs (and stochastic models in general) is  
the need to ‘debug’ models during development. A model is flawed if it cannot  
exhibit known behaviours. Clearly, sampling cannot certify the non-existence of a rare 
behaviour. 

On the other hand, decision procedures including Satisfiability Modulo Theories 
(SMT; Jha et al., 2009) are capable of producing proofs of infeasibility, even for classes 
of continuous dynamical systems (Jha et al., 2007). The algorithm presented in this paper 
employs decision procedures to address the problem of studying rare behaviours and 
debugging the associated stochastic model. Figure 1 gives an overview of our proposed 
approach. 

Our algorithm can analyse SDE models of complex systems for a priori known 
behaviour. The known behaviour can be specified using formal specifications including 
probabilistic flavours of temporal logic. The algorithm then uses SMT-based decision 
procedures to explore all possible behaviours of the stochastic biological models  
without explicitly enumerating them. If no discrete behaviour with a probability density 
higher than a given threshold is found, the algorithm reports that the model is incapable 
of showing the stated behaviour with the given probability density. Otherwise,  
our algorithm produces a discrete behaviour of the model conforming to the given 
specification. 
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Figure 1 Exploring rare behaviours of SDE models of biological systems: an overview of our 
proposed approach. Our algorithm analyses SDE models of complex systems for a 
priori known behaviour. It takes the SDE model and behavioural specifications as 
inputs and explores rare behaviours by using satisfiability modulo theory-based 
decision procedures (see online version for colours) 

 

2 Related work 

We are inspired by developments in the fields of formal methods and software 
verification and have exploited the tools and techniques developed by researchers in 
these areas to better studying rare behaviours in stochastic systems. Our approach draws 
on concepts and ideas from the theory and practice of formal verification of computer 
hardware and software, such as model checking (Baier and Katoen, 2008). The vast 
majority of these model checking methods are intended for either finite-state models or 
finite-state abstractions of infinite state systems. Differential equation models, naturally, 
are defined on continuous domains. While there are a handful of formal methods suitable 
for analysing Ordinary Differential Equation (ODEs) (e.g. Piazza et al., 2005) and 
stochastic Continuous Time Markov Chain (CTMC) models (Clarke et al., 2008; Heath 
et al., 2006; Jha et al., 2009), none are suitable for SDE models, with the exception of our 
previous work (Jha and Langmead, 2011a) which uses a combination of non-iid 
sampling, Bayesian statistical hypothesis testing and Girsanov’s theorem for change of 
measures to bound the probability of rare events. As the sampling procedure is not 
guided by the behaviour that is trying to discover, it is not surprising that our previous 
approach has limitations. In particular, the approach can never demonstrate that a model 
is incapable of demonstrating a specific behaviour with a given certainty. 

The key difference between our earlier work (Jha and Langmead, 2011a) and the 
research presented in this paper is that we employ decision procedures to guide the 
sampling, whereas our previous paper used change of measures. Decision procedures 
based on SMT have been previously used for the formal verification of the correctness of 
software and hardware models (Gulwani et al., 2011; Cohen et al., 2009; Jha et al., 
2010a), but not for complex stochastic models. Traditional research in SMT solving 
technique has focused on linear constraints with simple arithmetic and rich Boolean 
structure. However, the analysis of continuous and probabilistic dynamical systems gives 
rise to non-linear constraints. Recent research into non-linear decision procedures (Jha  
et al., 2009) makes our approach feasible. 
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3 Background 

Our proposed algorithm builds on a number of interrelated areas including SDE models, 
property specifications and decision procedures. We now very briefly survey each of 
these topics. 

3.1 Stochastic models 

The behaviour of many complex systems cannot be fully captured by deterministic 
models such as ODEs and Boolean networks (Langmead and Jha, 2008). For these 
systems, non-deterministic models, such as SDEs can often provide valuable insights. 
Stochastic models can be broadly partitioned into discrete and continuous state 
categories. Examples include Discrete Time Markov Chains (DTMCs) and CTMCs. The 
key difference between these models lies in how they model the passage of time, as their 
names suggest. Continuous state space models include SDE and jump diffusion processes 
(Karatzas and Shreve, 1991). In such models, both the passage of time and the values of 
state variables are continuous. The algorithm in this paper focuses on SDE models. 

An SDE (Karatzas and Shreve, 1991; Oksendal, 2003) is a differential equation in 
which some of the terms involve Brownian motions. A typical SDE is of the following 
form: 

   = , ,t t tdX b t X dt v t X dW  (1) 

where X is a system variable, b is a Riemann integrable function, v is an Ito  integrable 
function and W is Brownian motion. 

The exact solution to an SDE is difficult to obtain. Consider the time between 0 and t 
as divided into m equal steps: 1 20, , , =mt t t t . Let, 1= k kt t   for 0 <k m  and 

1k kt tW
   

1
=

k kt tW W

 . Further, the solution of an SDE (Karatzas and Shreve, 1991) is the limit of 

the following discrete difference equation, as m goes to infinity: 

   
1 1
= , ,

k k k k k kt t k t k t t tX X b t X v t X W
     (2) 

It has been shown that under certain restrictions on the functions b and v (i.e. the 
Lipschitz condition and the linear growth condition) (Oksendal, 2003), the solution to the 
SDE [see equation (1)] is well defined, i.e. the limit of the above difference equations 
exists and is unique. Just like traditional calculus, the rules of It o  integration allow us to 
compute closed-form solutions to some SDEs. As the solutions need not be deterministic, 
the final closed-form solution may include a Brownian motion or another process, and is 
itself a stochastic process. We note that our approach could be applied with greater ease 
on SDEs that admit a closed-form solution. In this paper, however, we will not restrict 
ourselves to those SDEs for which a closed-form solution can be computed, but instead 
present a more general approach that can be used in a larger set of cases. 

3.2 Adapted finitely monitorable specifications 

In this subsection, we present the formal definition of the notion of high-level 
behavioural specifications that we later use to describe the rare behaviours expected to be 
observed in an SDE biological model. Our interest lies in behavioural specifications 
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whose truth value can be decided by observing only a finite prefix of a simulation of the 
SDE model. The logical formulas that capture such properties are known as Adapted 
Finitely Monitorable (AFM) specifications (Jha and Langmead, 2011a; Jha and 
Langmead, 2011b). 

A special subclass of AFM specifications on an SDE model   can be expressed as 
formulas in Bounded Linear Temporal Logic (BLTL; Jha and Langmead, 2011a). For a 
biological SDE model  , we can assume that the set of state variables V is a finite 
discrete-valued set of variables. A Boolean predicate over V is a constraint of the form 
x v  or x v , where x V  and v . A BLTL property is expressed on a finite set of 
Boolean predicates over V using Boolean and Temporal operators. The syntax and 
semantics of the BLTL (Pnueli, 1977; Xu and Miao, 2008) is defined by the following: 

::= 1 2| |( )|x v x v     t
1 2 1 1 2 1( )| |( U )|X       . 

Here Vx , v  and t  . Additionally, we can define other temporal operators 

such as: t tG = F    or t tF = UTrue   in terms of the bounded until operators (Ut). 

Explicitly, the formula tG  implies that  holds at all moments for the next t time units 

into the future and the formula tF  implies that  holds sometime within the next t time 

units. 
The fact that a path  of a stochastic model satisfies property  is expressed by   . 

Assume 0 0 1 1=( , ), ( , ),s s     be a trace of the model along 0 1, ,s s   states with 

durations 0 1, ,     . We define the path that starts at state i by i (explicitly, 0 

refers the original execution ). ( , , )V i x  denotes the value of the state variable x in  at 

the state i. The semantics of BLTL with respect to the paths of   explained below: 

 k x v   iff ( , , )V k x v  : i.e. the constraint x v  is true in state sk; 

 k x v   iff ( , , )V k x v  : i.e. the constraint x v  is true in state sk; 

 1 2
k    iff 1

k   and 2
k  : i.e. 1 and 2 are both true in state sk; 

 1 2
k    iff 1

k   or 2
k  : i.e. 1 or 2 is true in state sk; 

 1
k   iff 1

k   does not hold: i.e. 1 is not true in state sk; 

 1 2
k tU    iff there exists i  such that (a) 

=
0

k i

jj k
t


   , (b) 2

k i   , and  

(c) for each 0 <j i , 1
k j   : i.e. within t time, 2 will be true and 1 will hold until 

then. 

 1
k X   iff 1

1
k   : i.e. 1 has to be true in state 1ks  . 

3.3 Bit-vector decision procedure 

Decision procedures are algorithms that can be used to decide whether a given logical 
formula (such as those discussed in the previous section) can have a satisfying 
assignment under a given interpretation of its constituent variables (Kroening and 
Strichman, 2008). Unlike incomplete theorem provers for higher order logic formulas 
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(Nipkow et al., 2002), algorithms for deciding the existential fragment of bit-vector first 
order logic (Jackson, 2000) are efficient and practical (Ghosh, 2010; Jha et al., 2009). 
Traditionally, two approaches have been used to solve bit-vector arithmetic constraints. 
In one approach, bit-vectors are translated into Boolean propositions by a process called 
‘bit blasting’ (Ganesh and Dill, 2007). This approach is similar to the process by which 
VLSI circuits for arithmetic are built. In another approach, the decision procedure uses a 
mathematical programming engine to reason about conjunctions of constraints in the bit-
vector SMT (Biere et al., 2009) formula. Here, the decision procedure may make 
multiple calls to a mathematical programming engine which, when combined with 
efficient bookkeeping via the Davis–Putnam–Logemann–Loveland (DPLL) algorithm, 
can be used to decide the truth value of the formula. SMT solvers can determine the 
satisfiability of formulas in expressive logics such as the existential fragment of first-
order logic and reason about background theories such as non-linear arithmetic that fix 
the interpretations of certain predicates and function’s symbols. Our algorithm uses an 
SMT-based approach to reason about SDEs. 

Several existing tools including Beaver (Jha et al., 2009), Boolector (Brummayer and 
Biere, 2009), CVC3 (Barrett and Tinelli, 2007), Yices (Dutertre and de Moura, 2006) and 
Z3 (de Moura and Bjørner, 2008) can be used to reason about bit-vector SMT formulas. 
SMT solvers like Beaver have been used to study non-linear hybrid systems and complex 
software systems with non-linear constraints (Gulwani et al., 2011; Jha et al., 2010a; Jha 
et al., 2010b; Jha et al., 2007). Bit-vector decision procedures like Beaver can also 
analyse the feasibility of non-linear constraints with fixed-precision arithmetic connected 
by arbitrary Boolean connectives like AND, OR and NOT. The ability to analyse non-
linear arithmetic constraints connected by Boolean connectives other than conjunction is 
a key feature of non-linear bit-vector decision procedures. 

In the context of our algorithm, the bit-vector decision procedure is invoked to search 
for suitable values of the Brownian motion at various points of time in a simulation such 
that (a) the SDE model shows the behaviour in the given specification and (b) the overall 
probability density of observing the discrete behaviour is maximised. Our algorithm may 
invoke the decision procedure several times to ensure that these high level constraints are 
met. 

4 Algorithms and results 

In this section, we present our algorithm and key theoretical results that prove the 
correctness of the algorithm. The high-level idea behind the algorithm is that it 
transforms both the SDE model and the behavioural specification into bit-vector SMT 
formulas, and then uses a decision procedure to decide whether the conjunction of all the 
formulas can be satisfied (up to a fixed precision). If the formulas cannot be satisfied, 
then the model does not exhibit the behaviour (again, up to fixed precision). If the 
formulas can be satisfied, the algorithm returns a discrete witness trajectory with 
maximal likelihood. Figure 2 provides a sketch of our proposed algorithm. 

Our correctness proof relies on the independence property of increments in Brownian 
motion stochastic processes and in the Gaussian distribution of the increments 
themselves. Intuitively, high probability density behaviours must correspond to small  
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Brownian motion increments. However, in this section, we show that this intuition is 
only partly true – high probability density behaviours correspond to small sums of 
squares of Brownian motion increments. 

Figure 2 A sketch of our decision procedure-based algorithm that investigates the likelihood of 
rare behaviours in stochastic differential equation models. Our algorithm translates the 
stochastic differential equation model and the behavioural specification into bit-vector 
SMT formulas. It uses an SMT-solver to explore rare behaviours given as input in the 
specification (see online version for colours) 

 

4.1 Algorithm 

Our algorithm is shown in Figure 3. The algorithm has seven inputs: 

1 Stochastic differential equation:    ( )= , ,t t tdX t b t X dt v t X dW  

2 Initial state for the solution to the SDE: X(0) 

3 Finitely monitorable behavioural specification:  

4 Maximum time for model simulation: tm 

5 Rate of search: , 0< <1  

6 Number of discrete time steps in the numerical simulation: m 

7 Ratio of probability density of the most likely behaviour to the probability density of 
the behaviour that we are interested in observing: r. 

The algorithm produces a discrete solution of the SDE that also satisfies the given 
behavioural specification. The algorithm uses the maximum time for model simulation tm 
and the number of discrete time steps m to compute the temporal discretisation  at 
which the SDE solution should be sampled and computes the threshold Tmax on the sum 
of the squares of the Brownian increments using a result that we derive in Lemma 5. 
Then, the SDE model and the behavioural specification are transformed into SMT bit-

vector constraints. Finally, the SMT solver is used to obtain a possible solution X  to the 
constraints enforced by the SDE, the initial condition, the bound on the probability, and 
the rare behaviour we want to observe. If such behaviour does not exist, the algorithm 
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stops and reports the absence of such behaviour. If the algorithm finds a witness, it 
continues searching for behaviours with higher probability by reducing the threshold that 
bounds the sum of the squares of the Brownian motion increments. 

Figure 3 Algorithm for discovering rare behaviours in stochastic models. Our algorithm uses the 
bit-vector decision procedures for verifying stochastic models with respect to a given 
behavioural specification. It either produces a discrete solution path of the stochastic 
differential equation satisfying the specification or reports the absence of the specified 
behaviour (up to a user-specified confidence) 

 

4.1.1 SDE to bit-vector SMT formula 

Recall the solution [equation (2)] to an SDE is the limit of the following discrete equation 
(as m goes to infinity): 

   
1 1
= , ,

k k k k k kt t k t k t t tX X b t X v t X W
     
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In our approach, we represent each of the variables 
kt

X  and 
1k kt tW
   using fixed-

precision bit-vectors and use bit-vector arithmetic to reason about mathematical 
operations. The solution to the SDE can be represented by the conjunction of the above 

constraints as:     1

1
=0

1
= , ,

k k k k kk

m
k t t k t k t t tX X b t X v t X W




  . In order to ensure that 

the fixed precision does not lead to stability issues, we consider bit-vectors with varying 
orders of bit-width. Also, we add constraints to include the possible set of initial values 
of the variable X. 

Our use of fixed-precision bit-vector arithmetic to reason about SDEs is similar to the 
study of dynamical hybrid systems with non-linear arithmetic constraints (Jha et al., 
2007). However, use of the decision procedure is limited to the exhaustive analysis of 
non-deterministic choices made by a possibly adversarial agent while we study the 
probabilistic outcome of a stochastic process. By adding further constraints to the SMT 
formula representing the solutions to the SDE, we restrict the solution space of the SDE 
to those behaviours that actually satisfy the given specification . Also, by carefully 
adding a well-thought constraint on the magnitudes of the bit-vector variables 
representing the Brownian motion, we enforce the constraint that these discrete 
behaviours have a high probability density by minimising the sum of squares of 
Brownian motion increments. 

4.1.2 Specification to bit-vector SMT formula 

In order to constrain the behaviours of the SDE, we translate the finitely monitorable 
specification to an SMT formula over bit-vectors. In this subsection, we demonstrate the 
translation of BLTL formulas into a bit-vector formula. The translation function   takes 
a BLTL formula and a time step as input. Our translation is given by the following 
recursive rewrite rules: 

 ( , )X v k  = kX v ; 

 ( , )X v k  = kX v ; 

 1 2( , )k   = 1( , )k    2( , )k ; 

 ( , )k  = ( , )k  ; 

 1 2( , )U k   =    1
= =02 1=

0 ( , ) ,
k im k i

i k jj k
k i k j            . 

We note that the right-hand side of every rewrite rule is either a bit-vector SMT formula 
or a Boolean combination of a bit-vector SMT formula and the translation function   
over a simpler formula. Because our specification formulas have finite sizes and we are 
only interested in properties over bounded time, our translation is bound to terminate and 
produce a finite bit-vector SMT formula. One can prove this using induction on the 
length of the formula and the time step parameter in the definition of the translation function. 

4.2 Proof of correctness 

In this section, we argue the correctness of our algorithm (see Figure 3). When the 
algorithm produces a likely discrete behaviour of the SDE satisfying the given 
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specification, , we derive the probability density of the discrete behaviour obtained. Our 
results rely on the independence of increments of Brownian motion and their Gaussian 
distribution. Recall the Brownian motion W (Oksendal, 2003) is a continuous-time 
stochastic process satisfying the following three conditions: 

1 W0 = 0 

2 Wt is continuous (almost surely). 

3 Wt has independent normally distributed increments: 

o t sW W  and t sW W   are independent if 0 < < <s t s t  . 

o t sW W  is distributed as (0, )t s , where (0, )t s  denotes the normal 

distribution with mean 0  and variance t – s. 

4.2.1 Probability density of solution to SDE 

Given a finely discretised solution 
0 1
, ,

mt t tX X X  to the SDE initial value problem, we 

want to determine the probability of observing this solution. Given the initial value ,
0t

X , 

we want to compute the probability density of observing the value 
1t

X  after t1 time. 

Suppose the corresponding values of Brownian motion at t0 and t1 are, respectively, 
0t

W  

and 
1t

W . Then: 

  1 0 1 0 1 0 0
( | )= = |t t t t t t tP X X P W W W W X   (3) 

   1 0 1 0 0 0
= = | =t t t t t tP W W W W W W   (4) 

 
1 0

1 0

2( )

2( )

1 0

1
=

2 ( )

W Wt t

t t

e
t t

  
  
 


 (5) 

Equation (3) holds because the only stochastic component of 
1t

X  is completely 

determined given the increment in Brownian motion and the initial value 
0t

X  for  

small values of t1 – t0. Further, Xt is adapted to the stochastic process Wt, and hence 
[equation (4)] is true. Since, increments in Brownian motion are normally distributed, as 

we know    
1 0 1 00,t tW W t t  . Hence, equation (5) gives the desired probability 

distribution. 

Lemma 1: The probability density of a discretised solution to a stochastic differential 
equation is inversely proportional to the exponential of the sum of squares of the 
increments of the Brownian motion.  
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Proof 1: We compute the probability density of observing the sequence of the observed 
discretised solution given the initial value: 

 
   
   
   
   

   
      

 

0 1 0

1 0 0 0

1 2 0 0 0

2 0 1 1 0

2 1 1 0

2 0 1 2 1

3 1 2 2 1 1 0

1

, , |

= , | |

= , , | , | =1

= , | , |

= , | |

, | , = |

= , | , | |

=

= |

m

m

m

m

m

m

m m

t t t t

t t t t t

t t t t t t

t t t t t t

t t t t t

t t t t t

t t t t t t t t

t t

P X X X X

P X X X P X X

P X X X X Since P X X

P X X X X P X X

P X X X P X X

Since P X X X P X X

P X X X X P X X P X X

P X X P X














  

  
  

1

1 0

21

2
/2 /2 =1| =(2 )

i i

m

W Wt t
m m i

t tX e


 
 

       


 (6) 

Conditional independence has been used repeatedly in the above derivation. 
Equation (6) gives the probability density of observing a given behaviour in an SDE. 

It satisfies our intuition that large values of Brownian motion increments should 
correspond to smaller probability densities while small values of Brownian motion 
increments correspond to large probability densities. However, equation (6) shows that 
the probability density only depends on the sum of squares of the increments of 
Brownian motion, and not on the individual increments themselves. 

Lemma 2: The highest probability density possible for a behaviour is /2 /2(2 ) m m   . 

Proof 2: 

  
1

21

2
/2 /2 =1=(2 )

i i

m

W Wt t
m m iP e



 
 

       


 

P will be highest when   1

2

=1
=0

i i

m

t ti
W W


  and the highest value is /2 /2(2 ) m m   . 

Lemma 3: 
 

1

2

=1

i im t t

i

W W


 
 
  

  has a -distribution with m  degrees of freedom. 

Proof 3: As 
 

1i it tW W





 are independent normal random variables with unit variance and 

mean 0, 
  2

1

=1

t tm i i

i

W W


 
 
  

  has a -distribution with m degrees of freedom. 
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Lemma 4: Given the sum of squares of the magnitudes of the Brownian motion 
increments, the probability of a path is independent of the Brownian motions themselves. 

Proof 4: The above result follows from Lemma 3, and rewriting equation (6). 

Lemma 5: Given the probability density P of a discretised SDE behaviour with m 
samples every  time apart, the sum of squares of increments of Brownian motion 

  
1

2

=1 i i

m

t ti
T W W


   should be equal to 

/2

1
2 log

(2 )mP 
 

   
. 

Proof 5: 
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 (7) 

A key concern in discretising a continuous SDE is the error introduced by sampling a 
continuous system, and replacing an SDE with a discretised difference equation. The 
existence and uniqueness of SDE ensures that the solution of a sufficiently discretised 
SDE approaches the solution of the continuous SDE (Kloeden and Platen, 2011). 

5 Experimental results 

In this section, we explore an SDE model representing the dynamics of the eukaryotic 
cell cycle (CC). We used the cell cycle model developed by Pfeuty and Kaneko (2007). 
The model describes the dynamics of cell growth and cell cycle division. We rewrite 
equations from their model (Pfeuty and Kaneko, 2007) to emphasise their stochastic nature: 

2

2

( )=( ( ) ) ( )

( )=( ) ( )

( )= ( )

x x xy x x x

y y y y

v v

dX t s d c Y X a X dt d t

dY t d Y s X dt d t

dV t gVdt d t

 

 

 

   

  



 

where X represents a set of components that are involved in triggering cell-cycle events 
(Pfeuty and Kaneko, 2007). Y represents a set of components that impose restrictions on 
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the activity of X-components (Pfeuty and Kaneko, 2007). V is the size of the cell and x, 
y and v represent standard Brownian motions (Pfeuty and Kaneko, 2007). A cell divides 
when the concentration of the Y-component reaches a critical value ( = 2) (Pfeuty and 
Kaneko, 2007). For our experiments, we set the normal time between cell divisions as 33 
time units, and the normal cell size at cell division time as 2.88 units. 

We apply our decision procedure-based algorithm to the model and investigate the 
likelihood of unlikely behaviours (including the rare behaviours) of the model. Such 
behaviours in the cell cycle can cause cytokinetic diseases including cancers and 
tumours. We recall that due to the probabilistic flavour of verification employed by our 
technique for discovering rare behaviours in stochastic models, our algorithm takes as 
input a number that represents the degree of rarity (i.e. the ratio of the probability density 
of the most likely behaviour of the model to the probability density of the behaviour that 
we are interested in investigating). 

We use our algorithm to determine if it is possible to decrease the time between cell 
divisions by at least 15% of the normal cell division time. The following BLTL 
specification captures this behavioural specification: 28.05 ( 2)F Y  . Our algorithm finds 

that the above behaviour is possible, and it is 1020 times less likely than the most likely 
behaviour. It is difficult to explore such unlikely behaviour using simulations. If one 
simulation run takes 1 millisecond, then it may take 1017 seconds, i.e. 3.17*109 years to 
produce this behaviour. 

We also investigate if it is possible to decrease the time between cell divisions by at 
least 10% of the normal cell division time (in BLTL, 29.7 ( 2)F Y  ), and 5% of the normal 

cell division time (in BLTL, 31.35 ( 2)F Y  ). We find that decreasing time between cell 

divisions by 10% is 106 times less likely than the most likely behaviour. We verify  
using simulations and produce the sample paths for Y which satisfy the behaviour (see 
Figure 4). Figure 5 shows sample paths for Y when the time between cell divisions is 
decreased by 5% of the normal cell division time. 

Figure 4 Simulation results for decreasing the time between cell divisions by at least 10% of the 
normal cell division time. We know that the cell divides when Y reaches the threshold 
value of 2. In the figure, the value of Y is plotted against time. Sample paths that satisfy 
the behaviour are shown in the plot. The observed behaviour is 106 times less likely 
than the most likely behaviour (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

   554 A.K. Ghosh et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 Simulation results for decreasing the time between cell divisions by at least 5% of the 
normal cell division time. The observed behaviour is 18 times less likely than the most 
likely behaviour. Sample paths that satisfy the behaviour are shown in the figure (see 
online version for colours) 

 

We also use our algorithm to explore the likelihood of unlikely behaviours in cell size. 
We consider the following behaviour: is it possible to increase cell size by at least 30% 
of the normal cell size within the normal cell division time. This property can be encoded 
as following BLTL specification: 33 ( 3.74)F V  . Our algorithm reports that the model is 

incapable of producing the stated behaviour with degree of rarity 1011. 
We also investigate the following: is it possible to increase cell size by at least 10% 

of the normal cell size within the normal cell division time (in BLTL, 33 ( 3.17)F V  ), and 

5% of the normal cell size within the normal cell division time (in BLTL, 33 ( 3.02)F V  ). 

Our algorithm finds that increasing cell size by 10% of the normal cell size is 1011 times 
less likely than the most likely behaviour, but increasing cell size by 5% is 854 times less 
likely than the most likely behaviours. Figure 6 shows sample paths for V when the cell 
size is increased by 5% of the normal cell size. The results of our experiments are shown 
in Table 1. 

Given a stochastic model and a temporal logic behavioural specification, our 
algorithm attempts to find the existence of rare behaviours in the model – it either reports 
the absence of the desired behaviour up to the initial fixed degree of rarity, or produces a 
witness trajectory of the behaviour being considered along with the maximum possible 
likelihood of that behaviour. Using pure numerical simulations, it is almost impossible to 
observe such rare behaviours or even prove their absence. Sampling is an inefficient 
means for studying rare behaviours because the vast majority of sampled trajectories will 
not exhibit desired behaviours. Our algorithm uses SMT-based symbolic decision 
procedures to explore all possible behaviours of the stochastic biological models without 
explicitly enumerating them. 
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Figure 6 Simulation results for increasing cell size by at least 5% of the normal cell size within 
the normal cell division time. In the figure, we show how the cell size (V) changes with 
time. The observed behaviour is 854 times less likely than the most likely behaviour. 
Sample paths that satisfy the behaviour are shown in the figure 

 

Table 1 Verification of feasibility of various cell division times and cell size changes. This 
table describes the results of the experiments about the time between cell divisions 
and cell size change in the CC model described in the experiment’s section 

Decrease time between cell divisions Increase cell size 

Time change 
(%) 

Ratio of probability 
density of most likely 

behaviour to 
probability density of 
observed behaviour 

Simulation 
verification 

Size 
change 

(%) 

Ratio of probability 
density of most likely 

behaviour to 
probability density of 
observed behaviour 

Simulation 
verification 

5% 18 Yes 5% 854 Yes 

10% 106 Yes 10% 1011 No 

15% 1020 No 30% 1011 (Not feasible) No 

6 Conclusion 

We have introduced an algorithm for efficiently investigating rare behaviours in SDE 
models. Informally, our method avoids the computational costs associated with sampling 
by, in effect, searching for trajectories from the model that satisfies a given behavioural 
specification. That is, our method only generates trajectories that exhibit the behaviour (if 
such trajectories exist), and then estimates the probability density of those trajectories. 
The actual search is performed by converting the SDE and the behavioural specification 
into bit-vector SMT formulas, and then calling an appropriate decision procedure to find 
witness trajectories. Thus, our method takes advantage of the efficiency and power of 
modern SMT-solvers. Consequently, as newer, more powerful decision procedures are 
created, our method will inherit the benefits of those methods. 
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While it can be argued that use of fixed-precision decision procedures is a limiting 
factor, it can be shown that the errors introduced through discretisation can be bounded. 
More importantly, our method enables users to explicitly specify the desired level of 
accuracy (in terms of the number of bits). Increased precision can be obtained by 
increasing the number of bits. Moreover, we feel that fixed-precision answers are usually 
sufficient in many soft applications (such as weather prediction model and 
epidemiological model) since the computational models themselves are merely 
abstractions of reality, and will be compared to experimental data which also has fixed 
precision. 

Several interesting directions for future research remain open. We are studying the 
use of SMT solving techniques to analyse rare behaviours of closed-form solutions to 
SDEs. Many practical applications require the study of a system where one component is 
an SDE and the other component may be an ODE or even a finite state controller. Our 
proposed rare behaviour discovery approach should be extended to such systems in order 
to study biologically important cyber-physical systems like artificial pancreas. The 
development of specialised SMT solving techniques that can solve the decision problems 
arising from such analysis is also an exciting area. 
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